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Flexible construction of hierarchical scale-free networks with general exponent
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Extensive studies have been done to understand the principles behind architectures of real networks. Re-
cently, evidence for hierarchical organization in many real networks has also been reported. Here, we present
a hierarchical model that reproduces the main experimental properties observed in real networks: scale-free of
degree distributiorP(k) [frequency of the nodes that are connected tmther nodes decays as a power law
P(k) ~ k™?] and power-law scaling of the clustering coeffici€ik) ~ k™X. The major points of our model can
be summarized as followsa) The model generates networks with scale-free distribution for the degree of
nodes with general exponemt>2, and arbitrarily close to any specified value, being able to reproduce most
of the observed hierarchical scale-free topologies. In contrast, previous models cannot obtain values of
>2.58.(b) Our model has structural flexibility becau6g it can incorporate various types of basic building
blocks (e.g., triangles, tetrahedrons, and, in general, fully connected clusteraades and (ii) it allows a
large variety of configuration§.e., the model can use more than 1 copies of basic blocks af nodes. The
structural features of our proposed model might lead to a better understanding of architectures of biological and
nonbiological networks.
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I. INTRODUCTION defined a<Ci(k;)=2n;/[ki(k;—1)], wheren; denotes the num-
) ] ) o ber of edges connecting neighbors of node, and C(N)
Recently,_ the importance of hierarchical modulgrlty in the aads asC(N)=[2,C,(k)]/N. Finally, the functionC(K) is
context of biological networkEl-3] and some nonbiological defined as the average clustering coefficient over nodes with

networks[4—6] has been pointed out and a number of theo, K =[S (TN whereN(K) i
retical models has been proposed. On the biological side, t%z zirr;qiedregfriﬁdi(s )()f[delgir:kkgl( )I/N(k), whereN(k) is

major challenge is to understand the relationships among In [2,4] Ravasz, Somera, Mongru, Oltvai, and Barabasi

fundamenta_ll elements_ such_ as genes, proteins, and Ch.emlcs%lggested a hierarchical modéie RSMOB model in what
substrates in cells. It is believed that some groups of inte

rz . . .
linked elementgi.e., functional moduléscan carry out rel- follows) to incorporate all the mentioned observed properties

. . : in the same framework. The model starts with a fully con-
evant tasks in a functional levgl]. These functional mod- )
. . : nected module of four nodeghe number of nodes in the
ules can be integrated into larger groups, generating a

) . = : .2 Initial module can be differeimtand four identical copies are
hierarchical organizatiof2]. Though experimental work is T - . !
) ; . __created, obtaining a network df=16 nodes in the first rep-
much more important, construction of adequate theoretlca\(fcaﬂon (42=16 nodek This process can be repeated indefi-
models is also important for better understanding of genera| . P P

principles behind architectures of biological networks. _nltely. We illustrate the process in Fig(g. It is me”“o”ed
Theoretical models for explaining real complex networks'" [_21] that the model follows a power-law s_cyalm_g fﬁ)(_k)
[30] have evolved during recent years, from the classicalwk and holds a scale-free topolog(k) ~Kk™, with y=1
random graph moddl7] and the small-world mod€l8] to ) ®
scale-free network mode[§-12]. The most important fea- i=1
ture of scale-free networks is that the degree distribution A
P(k) (frequency of the nodes that are connected tather
nodes decays as a power laR(k) ~ k™. In the earliest mod-
els of scale-free networkg9—11], probabilistic rules were
employed to construct networks incrementally. After that, de-
terministic scale-free models introduced [ib3,14 were a
step toward simulation of a modular topology. However,
these models lack the power-law scaling @fk), because

their nodes have clustering coefficieBi(k;)=0. Recently, FlG. 1 The RSMOB model2]. Initial clust ith 1
the modularity and hierarchical topologg—4] were intro- - 1. (@ The mode[2]. Initial cluster with four
. Lo nodes, which are fully connected. After the first replication the net-
duced to explain all the observed properties in complex net- ) o .
. work consists of 16 nodgg<=16). (b) The reorganized structure of
works. These observed properties of real networks With

. .. (&) to show clearly the similarities and differences between the RS-
nodes can be summarized as scale-free degree distributi

z . ) . B model and our proposed modét) Our proposed hierarchical
P(k)~k™, power-law scaling of the clustering coefficient .4 up toi =2. We note that only one copgamong four copies

C.(k)Nkﬂ, and an independence of the.network_sj_*tand exists with one edge connecting to the main hub. The number of
high value for the average of the clustering coeffic€(l).  such copies is not restricted. When the number growsalso
The clustering coefficient for each nodéocal clusteringis  increases.
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+(In4)/(In 3)=2.26. By modifying the number of nodes in
the initial module, the value ofy changes. However, the
value is constrained to2 y<1+(In 3)/(In 2) =2.58, which
indicates a small range of possible applications. Figubg 1
shows a reorganization of Fig(d to point out the main
structural differences between the RSMOB model and our
proposed model shown in Fig(d.

In this article, we propose a hierarchical model which
integrates the observed properties of real networks in a single
framework. The model can generate a scale-free topology
with exponenty>2, and arbitrarily close to any specified
value. In addition, our model has structural flexibility be-
cause it can incorporate various types of basic building
blocks (e.g., triangles, tetrahedronswvhich might lead to
better understanding of architectures of biological and non-
biological networks.

Il. THE MODEL FIG. 2. Topology and construction of our proposed modal.
The model can start with an arbitrary number of nodes which are
fully connected.(b) Considering the initial cluster of three nodes,
In order to explain some examples of our model, we lookthe two leftmost triangles have all their nodes connected to the main
at the structure depicted in Fig(l2. We see that there is a hub. This configuration is called thH@ +2) configuration. The de-
set of four trianglesfully connected clusters of three nodles gree of the main hub is calculatedkas2' +4, wherei is the number
with upper nodes connected to the main hub. In Fig) @e of iterations.(c) Four copies ofb) are made, and one notke new
notice that the initial cluster could have different structuresmain hub at this iterationis added(c) Contains four nodes as the
and could be a fully linked initial cluster of four, five, or second intermediate hubs. Each of these hubs Hotiiges, where
even larger number of nodes. The initial cluster correspondl=[2'+4]+1 andj=2.(d) Following the same process, four copies
to the iteration ofi=1. Figure 2b) shows the iteration of  ©f (c).are created. The process can be iterated indefinitely, con-
=2 where four copiegthe number of copies is selected ac- Structing a network with power law(k) k™. (e) Sketch of our
cording to the requiredy) of the initial cluster are created model considering only the main hub wikHinks and the nodes in

and one node in each initial cluster is linked to the main hubthe bottom leveli.e., nonhub nodgshat are connected to the main
In addition, we note that only two out of the four triangles hub. Since these nonhub nodes are connected i edges where

have all their vertices connected to the main hub. This conl—( =k=4, the clustering coefficient follows(k) ~1/k.

figuration is called th€2+2) configuration. In general, we _

will see that we can generate a network withm) configu- N; =47, (2
rra]\tion. '_:OL bkr)eyityk,]\(vﬁ call a node ir:‘_a copy g_orreshp%ndigg O rom ki=(2)+4)+1, we can write Irk;=j In 2 and also from
the main hub in thgth iteration ajth intermediate hupan — 2 (i —

call a node that is not the main hub or an intermediate hub [%\I;(p:lessiér\:\éeithiaswsetrgifzjjhtf?rvvjezlrg Z:O (\j\}ritjeln 4. From these
nonhub nodeln Fig. 2c), we show the network with itera-
tion of i=3. We make four replicas of the network in Fig. InN;=c,+In kj'('” 4/n 2) _ c +1In kj—Z_ (3)

2(b) and connect the second intermediate hubs in these cop- ) . L
ies to the main hub. The four nonhub nodes with the highesfience, the number of hubs with degieg.e., distribution of

degree among the nonhub nodes in two copies are also cofuPs with degre&) in the proposed network follows the

_2 . . .
nected to the main hub. In Fig(®, we show the network POwer lawN;k“. However, we must notice that in a hier-
with iteration ofi=4 which is obtained by making four rep- archical network, the number of nodes with different degree

licas of Fig. Zc), following the same process explained kis scarce, therefor(_a the probability distribution of node de-
above. This process can be iterated indefinitely. The degre@®€ is properly defined a8(k)=(1/Ni)[N(k)/Ak], where
distribution of this network is dominated by the intermediateN(K) is the number of nodes with degréeN, is the total
hubs. There is a main hub at the top of the structure and nefumber of nodes, andk means that nodes are binned into
intermediate hubs appear at each iteration. In Fig) @ intervals according to degréef2]. In addition, we note that
see four nodes as the second intermediate hubs. for the hierarchical modeldk changes linearly wittk (i.e.,
Suppose that we have a network wiaiterations. It is  AKj+1=kj+1—kj=2'=k;). Hence, this linear dependenceAX
straightforward to see that the degree of the main hub is makes the probability distribution to follow in the proposed
=2"+4. Since one edge is appended to jtieintermediate network the power law
h_ub at the(j -_Fl)th iteration, the degrek of the jth interme- P(K) = k2.
diate hub will be

A. Architecture of the model: Examples

(4)

k=2 +4)+1 1) In general, that binning gives rise tp=1+7', where v/

! ’ means the exponent of the power-law distribution of hubs
if 2<j<n. We can also see that the total numbgrof jth  [2]. Finally, we can describe more about configuration of
intermediate hubs will satisfy networks in our model by showing another example. First we
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consider a configuration that is able to reproduce the ob- 10°F e A @
served value ofy=3.25 in a language network, which has a 0l bou g T .
hierarchical organizatiof4]. This network is generated by 10.2; OOQ\‘ B s ,
connecting two words to each other if they appear as syn- j: o e
onyms in the Merriam-Webster dictionafg]. We construct ] 'y ]
the network with the2+3) configurationk;= (21+5)+1 and T 10'F A & E
N;=5"7], and we obtairN; =k " *"? where after binning 10°F Y
We get y=3.3. This value is in good agreement with the ok A )
observedy=3.25, which is not accessible with the RSMOB w.,i ]
model. The reason is that the RSMOB model can only i: . ]
handle the case oh=1. 0 100 1000
degree of node k
B. General case muér o 'p(]'c),:,];""'”l o (b)l'
The construction can be generalized in the following way. 0¥ ]
We denote by thél +m) configuration one such that, at each 10°F E
(say theith) iteration,|+m copies of the network at thé 10k 1
-1)th iteration are created. With this configuration, we con- §lo4;r 4
struct two types of connections between the copies and the 10.{, =3.04 -001) ,
main hub at theith iteration: connections between tlie «F
—-1)th intermediate hubs and the main hub, and connections '°7§r ]
betweenl' nonhub nodes with the highest degree and the 0 E
main hub. With the(l+m) configuration, the degree of the S T R T R 101 )
main hub isk=[I'+(I+m)] and since one edge is connected degree of node k

to the jth intermediate hub at thg +1)th iteration, the de-

gree of thek]- of the jth intermediate hub will be FIG. 3. (a) Circles: Distribution of nodes with degrde N(k),

normalized to the total number of nodéé, [i.e., N(k)/Ny]. The
ki = [+ (1 +m)+1]. (5) network is constructed with the configurati¢@+2) up to i=8
(54 613 nodesand three nodes as initial clustgriangles as build-
The total numbenN; of jth intermediate hubs will read as  ing blocks. Dashed line: Fit to the circle@nly the main and in-

termediate hubs It shows a power law with exponent’ =2.28.

=(+m™. (©) Triangles: Probability distributiodP(k) =(1/N;o)[N(k)/Ak], where
From these expressions we can obtain the power-law distritk means that hubs with degréeare binned into intervalakj,,
bution of hubs =Kj.1—kj=21 =K (i.e., k;<k=kj,1). We note that for degreds=8
and 9 we used k=21, From 1<k=7, there are values for ea&h
N; o k"‘/’, (7) and the binning is not requiretb) Triangles: same a®). Squares:
In order to prove that the numerical results provide the same results
where given by Eq.(4), we subtract five units of the degree of nddgn
In(l +m) the general casd +m)+1 unitg for each triangleg(only the main

. (8) and intermediate hubs The difference between triangles and
Inl squares comes from the approximation made frigm2'+5 to
Inkj=j In 2. Continuous line: Fit to the squares. It shows a power

After binning, we find that the probability distribution in the law with exponenty~3.

proposed network follows the power law
P(k) = k™, (9) . .
difference between the numerical values<ofind the pre-
wherey=1+y'. dicted ones by using Eq&3) and(9) is very small. In addi-
Equation(8) indicates that by tuning the parametéend tion, as we will show in Fig. 4 with a simple simulation, if
m we have a network with exponemnt which is arbitrarily  the network is very large both results are exactly the same. It
close to any required value above 2. is also important to remark that nonhub nodes do not follow
We remark that although Eq$8) and (9) give us the a power-law distribution with exponent given by E@®).
value of the exponeny of the power-law probability distri-  This tendency of nonhub nodes is also found in the RSMOB
bution, this value can differ slightly from the value obtained model.
by numerical calculation if the network is not very large. The  We notice here that this configuration is flexible and can
reason is that to obtain E@8), we approximated;=(I'+l  be modified. There are two important and modifiable factors:
+m)+1 as Inkj=j Inl. This is the reason that in the prob- (i) the number of copied +m) and the number of copig$)
ability distribution obtained by numerical calculations, we for which some of the nonhub nodes are connected to the
will remove (I+m+1) units from thex axis for the main hub  main hub, andii) the basic building blockge.g., triangle,
and intermediate hubs in order to verify the mathematicatetrahedrop The former determines the valyeand the lat-
derivation[see Fig. 8)]. However, as we will see later, the ter affects the structure of network architecture.
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I A these examples witly>2, our model is able to generate a
scale-free topology with exponents arbitrarily close to the
values shown above.

It is interesting to note that our model holds a similarity
with the model in[9,10], in particular with the preferential
attachment feature. In that model, new nodes are added at
time stept, and the probability that the new node is con-
nected to an already present naddéepends on the degrée
of that node(kj/Zkj)). As we can see in Fig. 2, in each
iteration we are adding a new nogfeain hul) plus copies of
previous structures. The new hub is connected deterministi-
cally to the nodes in the nonhubs but only to those that have
higher degre¢22]. In that sense, a remanence of the prefer-

FIG. 4. Values of 2+5 (degree of hubsversus the values of €ntial attachment concept is held in our model though the
4 (the number of copigsfor j=1, ... n andn=20. degree distribution for the nonhub nodes does not follow a
power law as in the RSMOB model.

¥=3.02 +-o001) h

4(m_|)
—
S
T T T T T T T T

10°

._.
OO

C. Advantages of the model IIl. NUMERICAL RESULTS OF DEGREE DISTRIBUTION

From this construction of the hierarchical network we AND PROBABILITY DISTRIBUTION

have several advantages if we compare with the RSMOB A. (2+2) configuration

model[2]. First, ¥ can be arbitrarilly close to any specified |, Fig. 3@ we show the degree distribution of our model
value above 2, far from the restraints of the RSMOB model,, ;i (2+2) configuration, up td=8. As we explained be-

Second, our procedure to generate the structure is more flegs.o the tail of that distributiohubg should follow a power
ible and allows more variety of configurations. In Figall |5 The dashed line fits the degree of the hubs of our gen-
we show two iterations of the RSMOB model with four ini- o a0 network. The meaning of this line is just the distribu-

tigl nodets), arr:d in Fig. (€) we ShOW ofur_model up.td):2. tion of nodes normalized to the total number of nodes. We
Figure 1b) shows a reorganization of Fig(d to point out <o ihat the value of’ is slightly different from the theoret-
the similarities and main differences between the RSMOB_ | value of 2. but the difference comes from the approxi-

model and our proposed model. In the setup of Fig. 1, OUfhation made fronkj:(zj+4)+1:21+5 to Inkj=j In2. If

. —(In 4/In 3)

model provides a dependence for the hubél ki _» we plot the dots after subtracting five unfis the general
and after binning we obtaip=1+(In4)/(In 3)=2.26, which  a5e(1+m)+1 unitg on the axis of the degree of noéteand
is the same result provided by the RSMOB model. In addi;; them, we can find exactly’ =2, indicating that the dif-

tion, we are more flexible with our topology by increasing tgrence hetween the two results came from that approxima-
the number of copies. For example, witB+3) configura- i
tion, we obtainN; k" #" 9 and after binning we getthe e will illustrate more clearly the above issue with the
value of y=2+(In 2)/(In 3)=2.63, which is not accessible following numerical simulation. For example, it is worth no-
with the RSMOB mode[2,15]. ticing that we can also reproduce the distribution without
Evidence for hierarchical organization in many real net-explicit construction of the network. If we compute the val-
works (biological and non-biological networké&as recently yes of 2+5 (degree of hubsversus the values of %! (the
been reported. On the biological side, the metabolic networlqumber of copiesfor j=1, ... n andn=20, we can obtain a
was analyzed if2,16,17 and the results showed that the power law corresponding tg’=2 for the distribution of
value of exponent isy=2.2, and the clustering coefficient nodes andy=3 for the probability distribution after binning
C(k) scales ak™. In [18] protein domain networks were (see Fig. 4 This indicates that by generating a large number
analyzed using data from different domain databases angf iterations in our model we are able to obtain exactly the
scale-free behaviors were reported with values of exponenigxponents predicted by E¢P).
y=2.5(ProDom databagey=1.7 (Pfam), and y=1.7 (Pros- We have explained that the degree distribution follows a
ite). A protein interaction network of the yeaSaccharomy-  power-law; however, we are interested in the probability dis-
ces cerevisaavas studied inf19] and it was found thaty  tribution of node degred®(k)=(1/N,,)[N(k)/Ak]. In Fig.
=2.5. In[20], the hierarchical signature of this network was 3(b) we show the probability distributiorftriangles after
revealed showing thal(k) scales a&™. From nonbiological  pinning is applied for the hubs. In addition, in order to obtain
networks, we can also find some examples that hold a scalghe same value predicted by E§), we plot the probability
free topology integrated in a hierarchical organizatidh  distribution of the hubs after subtracting five units on the
Here, we only mention the type of network and the corre-axis of k (squares The continuous line is fitted to the
sponding value ofy. y=2.3 for the actor networklO], v,y  squares and it shows a power-law probability distribution
=2.45 andy;,=2.1(denoting the out- and in-degree distribu- with exponenty=3.
tion respectively for the worldwide web[10], y=2.1-2.2
[21] for the internet at the AS levéinterdomain level and B. Other configurations
v=3.25 for a language netwoild]. In all these cases the In order to verify Eqs(8) and(9) by using more numeri-
scaling of C(k) suggests a hierarchical organizatie. For  cal data, we plot the degree and probability distributions ob-
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FIG. 5. Circles: Distribution of nodes with degr&eN(k), nor- FIG. 6. General expression ofin terms of the parameters of

malized to the total number of nodel,, [i.e., N(k)/N,,]. The  our proposed modélandm.

network is constructed with different configurations. These configu-

rations are indicated at the top right of each figu2r1) (7654  networks. In particular, we have analyzed the clustering de-
nodes and (2+3) (253 906 nodesup toi=8 iterations and2+4) pendence and the assortativity of our model.

(149 299 nodesup toi=7 iterations. Networks were generated by
using three nodes as the initial clustefangles as building blocks
Triangles: Probability distributiorP(k)=(1/Ny)[N(k)/Ak], where ) ) ) ) _
Ak means that hubs with degréeare binned into intervaldkj,, A kgy signature Of_ a hierarchical network is provided _by
=kjs1—kj=21 =K (i.e., kj <k=K;,1). The dashed line is fitted to the analyzing the clustering of the network. The local clustering
triangles and it shows power-law probability distributions. The ex-for each nodeé is defined a<C;(k;) =2n;/[ki(k,—1)], wheren,
ponents of the distributions are shown at the bottom of each figuredenotes the number of edges conneckingeighbors of node

A. Clustering dependence

For comparison, the predicted exponents given by @j.after  i. The average o€; over the vertices of degrdegives the
binning (i.e., y=1+y') are(2+1) y=2.58,(2+3) y=3.32, and2  degree-dependent local clusteringkl, and it reads as
+4) y=3.58.

cto=( 2 cik) / NG, (10
tained with our proposed model for some different configu- Iki=k

rations. In Fig. 5, we show the results Btk) by using(2  whereN(k) is the number of nodes of degrkeThis quantity
+1) and (2+3) up toi=8 iterations and2+4) up toi=7  indicates the probability that two nearest neighbors of a node
iterations. We plot the degree distribution with circles. Prob-of degreek are linked to each other. A scaling law Gfk) as
ability distributions(triangles are obtained after binning the k-1 is a fingerprint of hierarchical organization in networks.
degree distributions. Exponents of the power laws are indi- |n our model, we can also obtain a general expression of
cated at the bottom of each figure. These values are in th@e clustering coefficier®(k). In Fig. 1(e), we show a sketch
vicinity of those obtained by Eq9). of our model with the(l+m) configuration considering only
the main hub withk’ (k' =k—-I-m) edges to nonhub nodes. It
is seen that there alg/2 edges among the nonhub nodes.
) ) From this, it is straightforward to see that the clustering co-
In Fig. 6, we plot the general expressiop=1+In(l efficient for nonhub nodes is
+m)/In 1. This expression gives the value of the expongnt
in terms of the parametetsandm. For each valué, we have C(k) = (K'12)[k(k = 1)]/2} = 1Kk, (1)

evaluatedy up tom=8. In Fig. 6, we can see that the range s oing the power-law scaling for the degree of clustering in
of values ofy can be arbitrarily close to any specified value o, model. Concerning the average of the clustering coeffi-
above 2, by tuning andm. In addition, we can see in Fig. 6 cjent c(N), its behavior in our model is independent of the
that for=2, the predicted values of for m=1(y=2.58,  apyork sizeN as a consequence of the power-law scaling of
m=3 (y=3.39, andm=4 (y=3.58 are in agreement with () [23], in agreement with the observed properties in
those o_nes_obtalned by numerical computation of the modg},atanolic network$?2].
shown in Fig. 5 fom=1,3,4. In Fig. 7, we calculateC(k) for the (2+1), (2+2), and
(2+3) configurations in our model and we see the power-law
scaling of C(k) ~ k™%, which is also a key feature of the hi-
erarchical network.

It is worth noticing that, although this is a deterministic

Some topological quantities are usually studied in order tanodel, the power law fo€(k) shows a noisy signal for a low
provide signatures of hierarchy and structural organization oflegree of nodes in Fig. 7. The reason is because the nonhub

C. yvsland m

IV. HHERARCHY AND STRUCTURAL ORGANIZATION
OF THE MODEL
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FIG. 7. The clustering coefficier@(k) evaluated with the con- /’
figurations (2+1), up to i=8 iterations(7654 node (triangles, i T s —
(2+2), up toi=7 iterations(13 653 nodes(circles, and(2+3), up degree of nodes k
to i=6 iterations(10 156 nodes(squares In all these cases, the ) )
building blocks are triangles. FIG. 8. Numerical results df,,(k) calculated by using the pro-

posed model with configuration§2+1) up to i=8 iterations
(circles, (2+2) up toi=7 iterations(triangles, and(2+3) up toi
nodes(small degregsdo not follow a power law, and the _g jterations(squares Dashed lines: Results of Eq14) (high

power-law distribution is generated by only the hub nodesgegree of nodgsand Eq.(15) (low degree of nodes For each
This is not an exclusive feature of our model because th%onfiguration' the symbol with highest degreéndicates the con-

deterministic RSMOB model also shows this behavior. tribution from the main hub. We also note that the degree of the
main hub does not follow the approximate equation because this top
node does not have a parent. A small deviation from the analytical

B. Assortativity knn line around degre&=8 is found only for the2+1) configuration.
Another interesting quantity used to uncover the structuraln this case, some nonhub nodes and some hubnodes have the same

organization and to characterize a network is the averagéedree.

degree of nearest neighboks,(k) for nodes of degreé.

This quantity is related to the degree correlations betweetend to be connected with nonhub nodes.

nodes[24—27, and it can be written as Furthermore, we have derived the approximate math-
ematical expression &, for our proposed model. The deri-
Knn(K) = > K'P(K'[K), (12  vation ofk,, in our proposed model is as follows.
K’ (1) For hub nodes j(j means thgth intermediate hul

the degree reads &s=1'+(I+m)+1. Therefore, by using Eq.

where P(k’|k) is the conditional probability that a given (12) we can write

node with degreek is connected to a node of degr&é

When some correlations are present, the behavid,gk) ) j (-1 i+

characterizes a network. For example, whHep(k) grows (k) = [G+Dd ).+ (7 (m+1) +197] (13)

with k, it means that nodes of high degree are likely to have m D+(+m)+1 '

nearest neighbors of high degree. This property is calked

sortative mixing[28]. In contrast, a decreasing behavior of The first contribution of the numerator comes from the con-

kan(k) means that nodes of high degree are likely to haveditional probability of nonhub nodes. The number of nonhub

nearest neighbors of low degree. This property is calisd  nodes connected to th¢h intermediate hub node I and

assortative mixing If correlations are not presenk,,(k)  we multiply it by the degree of nonhub nodes, which is

=const. aroundj+1. The second term comes frof1)th interme-
We have evaluated,,(k) for the proposed model with diate hubs, and the third term comes from the 1)th hub.

configurations(2+1), (2+2), and(2+3) and the values are The denominator is the degree of ik intermediate hub. In

as shown in Fig. 8. addition, for a large number of intermediate hybshe pre-
These results show an assortative behavior for small derious equation can be read as

gree, and an uncorrelated behaviour for large degree of

nodes. The assortative tendency found for small degree cor- (I+m)

responds to the nonhub nodes, and the uncorrelated tendency Knn(Kj) = (j + 1) + +1 (14

is related to the hub nodes. Interestingly, a similar plokfgr

was shown irf24], where the hierarchy and structural orga- (2) For nonhub nodesvith degreek, we can write

nization of the world-wide airport network was analyzed.

There, it is shown that high-degree nodgsrports with K+ l+124 13+ oo +]kD kD q)
many nonstop connections, or international airpaigsd to Kan(K) = ~

have an uncorrelated structure, and low-degree ngalies k k(-1

ports with few nonstop connections or domestic airports (15
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The first termj comes from the degree of the nonhub nodes V. CONCLUSIONS
shown at the bottom of Fig.(8) (dark coloy, which are also
connected to the main hub. The series in term$ cbmes
from the connectivity of these nonhub nodes to jtieinter-

In summary, we have presented here a model to reproduce
the main features of the hierarchical organization, which is
: . one of the central challenges in the field of network science.
mediate hubsfor eachj). Our model holds important properties such as structural flex-
From Egs.(14) and (15), we can see that nonhub nodes ity and its more general capability to generate values of
and hub nodes have different behavior. These equations AL 2 being able to reproduce most of the observed scale-

plotted in Fig. 8(dashed linesfor the casd =m=2 (i.e., 2 gee topologies, even in networks with exponents abgve
+2). Itis worth noticing that the degree of the main hub does_5 5g "\ here the RSMOB model fai[g]. Therefore, our

not follow the approximate equation bgqause .this top node el might be a useful tool to uncover the hierarchical
does not have a parent. For example, it is straightforward gsa¢res in biological and nonbiological networks in a
see that the circléconfiguration 2+1 with highest degree p,oader scope. As future work, it would be interesting to

. . . i . . ;
corresponds to the main hub with degree givenksy2' 5576 the community structure or modularity in the pro-

+(2+1). As the number of iteration is=8, the degree of the 5564 network by using the quantitative measures provided
main hub isk=259. We see that a circle with that high degreeby a recent work of Newman and Girva29].

is seen in Fig. 8 and slightly below the analytical line. Fi-
nally, we remark that, although the equations proposed for
nonhub node$Eq. (15)] and hub nodefEgs.(13) and(14)]

are an approximate estimation, the analytical expressions This work was partially supported by a Grant-in-Aid for
capture quite well the behavior of the results obtained byScientific Research on Priority Are&8) “Genome Informa-
numerical calculation of the model shown in Fig. 8. tion Science” from MEXT(Japan.
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