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Extensive studies have been done to understand the principles behind architectures of real networks. Re-
cently, evidence for hierarchical organization in many real networks has also been reported. Here, we present
a hierarchical model that reproduces the main experimental properties observed in real networks: scale-free of
degree distributionPskd ffrequency of the nodes that are connected tok other nodes decays as a power law
Pskd,k−gg and power-law scaling of the clustering coefficientCskd,k−1. The major points of our model can
be summarized as follows.sad The model generates networks with scale-free distribution for the degree of
nodes with general exponentg.2, and arbitrarily close to any specified value, being able to reproduce most
of the observed hierarchical scale-free topologies. In contrast, previous models cannot obtain values ofg
.2.58. sbd Our model has structural flexibility becausesid it can incorporate various types of basic building
blocks se.g., triangles, tetrahedrons, and, in general, fully connected clusters ofn nodesd and sii d it allows a
large variety of configurationssi.e., the model can use more thann−1 copies of basic blocks ofn nodesd. The
structural features of our proposed model might lead to a better understanding of architectures of biological and
nonbiological networks.

DOI: 10.1103/PhysRevE.71.036132 PACS numberssd: 89.75.Hc, 05.65.1b

I. INTRODUCTION

Recently, the importance of hierarchical modularity in the
context of biological networksf1–3g and some nonbiological
networksf4–6g has been pointed out and a number of theo-
retical models has been proposed. On the biological side, a
major challenge is to understand the relationships among
fundamental elements such as genes, proteins, and chemical
substrates in cells. It is believed that some groups of inter-
linked elementssi.e., functional modulesd can carry out rel-
evant tasks in a functional levelf1g. These functional mod-
ules can be integrated into larger groups, generating a
hierarchical organizationf2g. Though experimental work is
much more important, construction of adequate theoretical
models is also important for better understanding of general
principles behind architectures of biological networks.

Theoretical models for explaining real complex networks
f30g have evolved during recent years, from the classical
random graph modelf7g and the small-world modelf8g to
scale-free network modelsf9–12g. The most important fea-
ture of scale-free networks is that the degree distribution
Pskd sfrequency of the nodes that are connected tok other
nodesd decays as a power lawPskd,k−g. In the earliest mod-
els of scale-free networksf9–11g, probabilistic rules were
employed to construct networks incrementally. After that, de-
terministic scale-free models introduced inf13,14g were a
step toward simulation of a modular topology. However,
these models lack the power-law scaling ofCskd, because
their nodes have clustering coefficientCiskid=0. Recently,
the modularity and hierarchical topologyf2–4g were intro-
duced to explain all the observed properties in complex net-
works. These observed properties of real networks withN
nodes can be summarized as scale-free degree distribution
Pskd,k−g, power-law scaling of the clustering coefficient
Cskd,k−1, and an independence of the network sizeN and
high value for the average of the clustering coefficientCsNd.
The clustering coefficient for each nodei slocal clusteringd is

defined asCiskid=2ni / fkiski −1dg, whereni denotes the num-
ber of edges connectingki neighbors of nodei, and CsNd
reads asCsNd=foiCiskidg /N. Finally, the functionCskd is
defined as the average clustering coefficient over nodes with
the same degreek: Cskd=foi:ki=kCiskidg /Nskd, whereNskd is
the number of nodes of degreek.

In f2,4g Ravasz, Somera, Mongru, Oltvai, and Barabási
suggested a hierarchical modelsthe RSMOB model in what
followsd to incorporate all the mentioned observed properties
in the same framework. The model starts with a fully con-
nected module of four nodessthe number of nodes in the
initial module can be differentd, and four identical copies are
created, obtaining a network ofN=16 nodes in the first rep-
lication s42=16 nodesd. This process can be repeated indefi-
nitely. We illustrate the process in Fig. 1sad. It is mentioned
in f2g that the model follows a power-law scaling forCskd
,k−1 and holds a scale-free topologyPskd,k−g, with g=1

FIG. 1. sad The RSMOB modelf2g. Initial cluster with four
nodes, which are fully connected. After the first replication the net-
work consists of 16 nodess42=16d. sbd The reorganized structure of
sad to show clearly the similarities and differences between the RS-
MOB model and our proposed model.scd Our proposed hierarchical
model up toi =2. We note that only one copysamong four copiesd
exists with one edge connecting to the main hub. The number of
such copies is not restricted. When the number grows,g also
increases.
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+sln 4d / sln 3d.2.26. By modifying the number of nodes in
the initial module, the value ofg changes. However, the
value is constrained to 2,gø1+sln 3d / sln 2d.2.58, which
indicates a small range of possible applications. Figure 1sbd
shows a reorganization of Fig. 1sad to point out the main
structural differences between the RSMOB model and our
proposed model shown in Fig. 1scd.

In this article, we propose a hierarchical model which
integrates the observed properties of real networks in a single
framework. The model can generate a scale-free topology
with exponentg.2, and arbitrarily close to any specified
value. In addition, our model has structural flexibility be-
cause it can incorporate various types of basic building
blocks se.g., triangles, tetrahedronsd, which might lead to
better understanding of architectures of biological and non-
biological networks.

II. THE MODEL

A. Architecture of the model: Examples

In order to explain some examples of our model, we look
at the structure depicted in Fig. 2sbd. We see that there is a
set of four trianglessfully connected clusters of three nodesd
with upper nodes connected to the main hub. In Fig. 2sad we
notice that the initial cluster could have different structures
and could be a fully linked initial cluster of four, five, or
even larger number of nodes. The initial cluster corresponds
to the iteration ofi =1. Figure 2sbd shows the iteration ofi
=2 where four copiessthe number of copies is selected ac-
cording to the requiredgd of the initial cluster are created
and one node in each initial cluster is linked to the main hub.
In addition, we note that only two out of the four triangles
have all their vertices connected to the main hub. This con-
figuration is called thes2+2d configuration. In general, we
will see that we can generate a network withsl +md configu-
ration. For brevity, we call a node in a copy corresponding to
the main hub in thej th iteration aj th intermediate hub, and
call a node that is not the main hub or an intermediate hub a
nonhub node. In Fig. 2scd, we show the network with itera-
tion of i =3. We make four replicas of the network in Fig.
2sbd and connect the second intermediate hubs in these cop-
ies to the main hub. The four nonhub nodes with the highest
degree among the nonhub nodes in two copies are also con-
nected to the main hub. In Fig. 2sdd, we show the network
with iteration of i =4 which is obtained by making four rep-
licas of Fig. 2scd, following the same process explained
above. This process can be iterated indefinitely. The degree
distribution of this network is dominated by the intermediate
hubs. There is a main hub at the top of the structure and new
intermediate hubs appear at each iteration. In Fig. 2scd we
see four nodes as the second intermediate hubs.

Suppose that we have a network vian iterations. It is
straightforward to see that the degree of the main hub isk
=2n+4. Since one edge is appended to thej th intermediate
hub at thes j +1dth iteration, the degreekj of the j th interme-
diate hub will be

kj = s2j + 4d + 1, s1d

if 2 ø j ,n. We can also see that the total numberNj of j th
intermediate hubs will satisfy

Nj = 4sn−jd. s2d

Fromkj =s2j +4d+1, we can write lnkj . j ln 2 and also from
Nj =4sn−jd, we have lnNj =sn− jdln 4=c1− j ln 4. From these
expressions it is straightforward to write

ln Nj = c1 + ln kj
−sln 4/ln 2d = c1 + ln kj

−2. s3d

Hence, the number of hubs with degreek si.e., distribution of
hubs with degreekd in the proposed network follows the
power lawNj ~kj

−2. However, we must notice that in a hier-
archical network, the number of nodes with different degree
k is scarce, therefore the probability distribution of node de-
gree is properly defined asPskd=s1/NtotdfNskd /Dkg, where
Nskd is the number of nodes with degreek, Ntot is the total
number of nodes, andDk means that nodes are binned into
intervals according to degreek f2g. In addition, we note that
for the hierarchical model,Dk changes linearly withk si.e.,
Dkj+1=kj+1−kj =2j .kjd. Hence, this linear dependence ofDk
makes the probability distribution to follow in the proposed
network the power law

Pskd ~ k−3. s4d

In general, that binning gives rise tog=1+g8, where g8
means the exponent of the power-law distribution of hubs
f2g. Finally, we can describe more about configuration of
networks in our model by showing another example. First we

FIG. 2. Topology and construction of our proposed model.sad
The model can start with an arbitrary number of nodes which are
fully connected.sbd Considering the initial cluster of three nodes,
the two leftmost triangles have all their nodes connected to the main
hub. This configuration is called thes2+2d configuration. The de-
gree of the main hub is calculated ask=2i +4, wherei is the number
of iterations.scd Four copies ofsbd are made, and one nodesthe new
main hub at this iterationd is added.scd Contains four nodes as the
second intermediate hubs. Each of these hubs holdsk edges, where
kj =f2j +4g+1 andj =2. sdd Following the same process, four copies
of scd are created. The process can be iterated indefinitely, con-
structing a network with power lawPskd~k−2. sed Sketch of our
model considering only the main hub withk links and the nodes in
the bottom levelsi.e., nonhub nodesd that are connected to the main
hub. Since these nonhub nodes are connected byk8 /2 edges where
k8=k−4, the clustering coefficient followsCskd.1/k.
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consider a configuration that is able to reproduce the ob-
served value ofg=3.25 in a language network, which has a
hierarchical organizationf4g. This network is generated by
connecting two words to each other if they appear as syn-
onyms in the Merriam-Webster dictionaryf4g. We construct
the network with thes2+3d configurationfkj =s2j +5d+1 and
Nj =5n−jg, and we obtainNj ~kj

−sln 5/ln 2d, where after binning
we get g=3.3. This value is in good agreement with the
observedg=3.25, which is not accessible with the RSMOB
model. The reason is that the RSMOB model can only
handle the case ofm=1.

B. General case

The construction can be generalized in the following way.
We denote by thesl +md configuration one such that, at each
ssay theithd iteration, l +m copies of the network at thesi
−1dth iteration are created. With this configuration, we con-
struct two types of connections between the copies and the
main hub at theith iteration: connections between thesi
−1dth intermediate hubs and the main hub, and connections
betweenl i nonhub nodes with the highest degree and the
main hub. With thesl +md configuration, the degree of the
main hub isk=fl j +sl +mdg and since one edge is connected
to the j th intermediate hub at thes j +1dth iteration, the de-
gree of thekj of the j th intermediate hub will be

kj = fl j + sl + md + 1g. s5d

The total numberNj of j th intermediate hubs will read as

Nj = sl + mdn−j . s6d

From these expressions we can obtain the power-law distri-
bution of hubs

Nj ~ k−g8, s7d

where

g8 =
lnsl + md

ln l
. s8d

After binning, we find that the probability distribution in the
proposed network follows the power law

Pskd ~ k−g, s9d

whereg=1+g8.
Equations8d indicates that by tuning the parametersl and

m we have a network with exponentg, which is arbitrarily
close to any required value above 2.

We remark that although Eqs.s8d and s9d give us the
value of the exponentg of the power-law probability distri-
bution, this value can differ slightly from the value obtained
by numerical calculation if the network is not very large. The
reason is that to obtain Eq.s8d, we approximatedkj =sl j + l
+md+1 as lnkj . j ln l. This is the reason that in the prob-
ability distribution obtained by numerical calculations, we
will remove sl +m+1d units from thex axis for the main hub
and intermediate hubs in order to verify the mathematical
derivationfsee Fig. 3sbdg. However, as we will see later, the

difference between the numerical values ofg and the pre-
dicted ones by using Eqs.s8d ands9d is very small. In addi-
tion, as we will show in Fig. 4 with a simple simulation, if
the network is very large both results are exactly the same. It
is also important to remark that nonhub nodes do not follow
a power-law distribution with exponent given by Eq.s8d.
This tendency of nonhub nodes is also found in the RSMOB
model.

We notice here that this configuration is flexible and can
be modified. There are two important and modifiable factors:
sid the number of copiessl +md and the number of copiessld
for which some of the nonhub nodes are connected to the
main hub, andsii d the basic building blocksse.g., triangle,
tetrahedrond. The former determines the valueg and the lat-
ter affects the structure of network architecture.

FIG. 3. sad Circles: Distribution of nodes with degreek, Nskd,
normalized to the total number of nodes,Ntot fi.e., Nskd /Ntotg. The
network is constructed with the configurations2+2d up to i =8
s54 613 nodesd and three nodes as initial clusterstriangles as build-
ing blocksd. Dashed line: Fit to the circlessonly the main and in-
termediate hubsd. It shows a power law with exponentg8=2.28.
Triangles: Probability distributionPskd=s1/NtotdfNskd /Dkg, where
Dk means that hubs with degreek are binned into intervalsDkj+1

=kj+1−kj =2j .kj si.e., kj ,køkj+1d. We note that for degreesk=8
and 9 we usedDk=21. From 1,kø7, there are values for eachk,
and the binning is not required.sbd Triangles: same assad. Squares:
In order to prove that the numerical results provide the same results
given by Eq.s4d, we subtract five units of the degree of nodek fin
the general casesl +md+1 unitsg for each trianglesonly the main
and intermediate hubsd. The difference between triangles and
squares comes from the approximation made fromkj =2j +5 to
ln kj . j ln 2. Continuous line: Fit to the squares. It shows a power
law with exponentg.3.
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C. Advantages of the model

From this construction of the hierarchical network we
have several advantages if we compare with the RSMOB
model f2g. First, g can be arbitrarily close to any specified
value above 2, far from the restraints of the RSMOB model.
Second, our procedure to generate the structure is more flex-
ible and allows more variety of configurations. In Fig. 1sad
we show two iterations of the RSMOB model with four ini-
tial nodes, and in Fig. 1scd we show our model up toi =2.
Figure 1sbd shows a reorganization of Fig. 1sad to point out
the similarities and main differences between the RSMOB
model and our proposed model. In the setup of Fig. 1, our
model provides a dependence for the hubs asNj ~kj

−sln 4/ln 3d,
and after binning we obtaing=1+sln 4d / sln 3d.2.26, which
is the same result provided by the RSMOB model. In addi-
tion, we are more flexible with our topology by increasing
the number of copies. For example, withs3+3d configura-
tion, we obtainNj ~kj

−s1+ln 2/ln 3d and after binning we get the
value of g=2+sln 2d / sln 3d.2.63, which is not accessible
with the RSMOB modelf2,15g.

Evidence for hierarchical organization in many real net-
works sbiological and non-biological networksd has recently
been reported. On the biological side, the metabolic network
was analyzed inf2,16,17g and the results showed that the
value of exponent isg=2.2, and the clustering coefficient
Cskd scales ask−1. In f18g protein domain networks were
analyzed using data from different domain databases and
scale-free behaviors were reported with values of exponents
g=2.5 sProDom databased, g=1.7 sPfamd, andg=1.7 sPros-
ited. A protein interaction network of the yeastSaccharomy-
ces cerevisaewas studied inf19g and it was found thatg
=2.5. In f20g, the hierarchical signature of this network was
revealed showing thatCskd scales ask−1. From nonbiological
networks, we can also find some examples that hold a scale-
free topology integrated in a hierarchical organizationf4g.
Here, we only mention the type of network and the corre-
sponding value ofg: g=2.3 for the actor networkf10g, gout
=2.45 andgin=2.1 sdenoting the out- and in-degree distribu-
tion respectivelyd for the worldwide webf10g, g=2.1–2.2
f21g for the internet at the AS levelsinterdomain leveld, and
g=3.25 for a language networkf4g. In all these cases the
scaling ofCskd suggests a hierarchical organizationf4g. For

these examples withg.2, our model is able to generate a
scale-free topology with exponents arbitrarily close to the
values shown above.

It is interesting to note that our model holds a similarity
with the model inf9,10g, in particular with the preferential
attachment feature. In that model, new nodes are added at
time stept, and the probability that the new node is con-
nected to an already present nodei depends on the degreeki
of that nodeski /o jkjd. As we can see in Fig. 2, in each
iteration we are adding a new nodesmain hubd plus copies of
previous structures. The new hub is connected deterministi-
cally to the nodes in the nonhubs but only to those that have
higher degreef22g. In that sense, a remanence of the prefer-
ential attachment concept is held in our model though the
degree distribution for the nonhub nodes does not follow a
power law as in the RSMOB model.

III. NUMERICAL RESULTS OF DEGREE DISTRIBUTION
AND PROBABILITY DISTRIBUTION

A. „2+2… configuration

In Fig. 3sad we show the degree distribution of our model
with s2+2d configuration, up toi =8. As we explained be-
fore, the tail of that distributionshubsd should follow a power
law. The dashed line fits the degree of the hubs of our gen-
erated network. The meaning of this line is just the distribu-
tion of nodes normalized to the total number of nodes. We
see that the value ofg8 is slightly different from the theoret-
ical value of 2, but the difference comes from the approxi-
mation made fromkj =s2j +4d+1=2j +5 to lnkj . j ln 2. If
we plot the dots after subtracting five unitsfin the general
casesl +md+1 unitsg on the axis of the degree of nodek and
fit them, we can find exactlyg8=2, indicating that the dif-
ference between the two results came from that approxima-
tion.

We will illustrate more clearly the above issue with the
following numerical simulation. For example, it is worth no-
ticing that we can also reproduce the distribution without
explicit construction of the network. If we compute the val-
ues of 2j +5 sdegree of hubsd versus the values of 4sn−jd sthe
number of copiesd for j =1, . . . ,n andn=20, we can obtain a
power law corresponding tog8=2 for the distribution of
nodes andg=3 for the probability distribution after binning
ssee Fig. 4d. This indicates that by generating a large number
of iterations in our model we are able to obtain exactly the
exponents predicted by Eq.s9d.

We have explained that the degree distribution follows a
power-law; however, we are interested in the probability dis-
tribution of node degreePskd=s1/NtotdfNskd /Dkg. In Fig.
3sbd we show the probability distributionstrianglesd after
binning is applied for the hubs. In addition, in order to obtain
the same value predicted by Eq.s9d, we plot the probability
distribution of the hubs after subtracting five units on the
axis of k ssquaresd. The continuous line is fitted to the
squares and it shows a power-law probability distribution
with exponentg=3.

B. Other configurations

In order to verify Eqs.s8d ands9d by using more numeri-
cal data, we plot the degree and probability distributions ob-

FIG. 4. Values of 2j +5 sdegree of hubsd versus the values of
4sn−jd sthe number of copiesd for j =1, . . . ,n andn=20.
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tained with our proposed model for some different configu-
rations. In Fig. 5, we show the results ofPskd by using s2
+1d and s2+3d up to i =8 iterations ands2+4d up to i =7
iterations. We plot the degree distribution with circles. Prob-
ability distributionsstrianglesd are obtained after binning the
degree distributions. Exponents of the power laws are indi-
cated at the bottom of each figure. These values are in the
vicinity of those obtained by Eq.s9d.

C. g vs l and m

In Fig. 6, we plot the general expressiong=1+lnsl
+md / ln l. This expression gives the value of the exponentg
in terms of the parametersl andm. For each valuel, we have
evaluatedg up to m=8. In Fig. 6, we can see that the range
of values ofg can be arbitrarily close to any specified value
above 2, by tuningl andm. In addition, we can see in Fig. 6
that for l =2, the predicted values ofg for m=1 sg=2.58d,
m=3 sg=3.32d, and m=4 sg=3.58d are in agreement with
those ones obtained by numerical computation of the model
shown in Fig. 5 form=1,3,4.

IV. HIERARCHY AND STRUCTURAL ORGANIZATION
OF THE MODEL

Some topological quantities are usually studied in order to
provide signatures of hierarchy and structural organization of

networks. In particular, we have analyzed the clustering de-
pendence and the assortativity of our model.

A. Clustering dependence

A key signature of a hierarchical network is provided by
analyzing the clustering of the network. The local clustering
for each nodei is defined asCiskid=2ni / fkiski −1dg, whereni

denotes the number of edges connectingki neighbors of node
i. The average ofCi over the vertices of degreek gives the
degree-dependent local clustering Cskd, and it reads as

Cskd = S o
i:ki=k

CiskidDYNskd, s10d

whereNskd is the number of nodes of degreek. This quantity
indicates the probability that two nearest neighbors of a node
of degreek are linked to each other. A scaling law ofCskd as
k−1 is a fingerprint of hierarchical organization in networks.

In our model, we can also obtain a general expression of
the clustering coefficientCskd. In Fig. 1sed, we show a sketch
of our model with thesl +md configuration considering only
the main hub withk8 sk8=k− l −md edges to nonhub nodes. It
is seen that there arek8 /2 edges among the nonhub nodes.
From this, it is straightforward to see that the clustering co-
efficient for nonhub nodes is

Cskd = sk8/2d/hfksk − 1dg/2j . 1/k, s11d

showing the power-law scaling for the degree of clustering in
our model. Concerning the average of the clustering coeffi-
cient CsNd, its behavior in our model is independent of the
network sizeN as a consequence of the power-law scaling of
Cskd f23g, in agreement with the observed properties in
metabolic networksf2g.

In Fig. 7, we calculateCskd for the s2+1d, s2+2d, and
s2+3d configurations in our model and we see the power-law
scaling ofCskd,k−1, which is also a key feature of the hi-
erarchical network.

It is worth noticing that, although this is a deterministic
model, the power law forCskd shows a noisy signal for a low
degree of nodes in Fig. 7. The reason is because the nonhub

FIG. 5. Circles: Distribution of nodes with degreek, Nskd, nor-
malized to the total number of nodes,Ntot fi.e., Nskd /Ntotg. The
network is constructed with different configurations. These configu-
rations are indicated at the top right of each figure:s2+1d s7654
nodesd and s2+3d s253 906 nodesd up to i =8 iterations ands2+4d
s149 299 nodesd up to i =7 iterations. Networks were generated by
using three nodes as the initial clusterstriangles as building blocksd.
Triangles: Probability distributionPskd=s1/NtotdfNskd /Dkg, where
Dk means that hubs with degreek are binned into intervalsDkj+1

=kj+1−kj =2j .kj si.e., kj ,køkj+1d. The dashed line is fitted to the
triangles and it shows power-law probability distributions. The ex-
ponents of the distributions are shown at the bottom of each figure.
For comparison, the predicted exponents given by Eq.s9d after
binning si.e., g=1+g8d are s2+1d g=2.58, s2+3d g=3.32, ands2
+4d g=3.58.

FIG. 6. General expression ofg in terms of the parameters of
our proposed modell andm.
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nodesssmall degreesd do not follow a power law, and the
power-law distribution is generated by only the hub nodes.
This is not an exclusive feature of our model because the
deterministic RSMOB model also shows this behavior.

B. Assortativity knn

Another interesting quantity used to uncover the structural
organization and to characterize a network is the average
degree of nearest neighborsknnskd for nodes of degreek.
This quantity is related to the degree correlations between
nodesf24–27g, and it can be written as

knnskd = o
k8

k8Psk8ukd, s12d

where Psk8 ukd is the conditional probability that a given
node with degreek is connected to a node of degreek8.
When some correlations are present, the behavior ofknnskd
characterizes a network. For example, whenknnskd grows
with k, it means that nodes of high degree are likely to have
nearest neighbors of high degree. This property is calledas-
sortative mixingf28g. In contrast, a decreasing behavior of
knnskd means that nodes of high degree are likely to have
nearest neighbors of low degree. This property is calleddis-
assortative mixing. If correlations are not present,knnskd
=const.

We have evaluatedknnskd for the proposed model with
configurationss2+1d, s2+2d, and s2+3d and the values are
as shown in Fig. 8.

These results show an assortative behavior for small de-
gree, and an uncorrelated behaviour for large degree of
nodes. The assortative tendency found for small degree cor-
responds to the nonhub nodes, and the uncorrelated tendency
is related to the hub nodes. Interestingly, a similar plot forknn
was shown inf24g, where the hierarchy and structural orga-
nization of the world-wide airport network was analyzed.
There, it is shown that high-degree nodessairports with
many nonstop connections, or international airportsd tend to
have an uncorrelated structure, and low-degree nodessair-
ports with few nonstop connections or domestic airportsd

tend to be connected with nonhub nodes.
Furthermore, we have derived the approximate math-

ematical expression ofknn for our proposed model. The deri-
vation of knn in our proposed model is as follows.

s1d For hub nodes jsj means thej th intermediate hubd,
the degree reads askj = l j +sl +md+1. Therefore, by using Eq.
s12d we can write

knnskjd <
fs j + 1dsl jd + sl s j−1ddsm+ ld + l s j+1dg

l j + sl + md + 1
. s13d

The first contribution of the numerator comes from the con-
ditional probability of nonhub nodes. The number of nonhub
nodes connected to thej th intermediate hub node isl j, and
we multiply it by the degree of nonhub nodes, which is
around j +1. The second term comes froms j −1dth interme-
diate hubs, and the third term comes from thes j +1dth hub.
The denominator is the degree of thej th intermediate hub. In
addition, for a large number of intermediate hubsj , the pre-
vious equation can be read as

knnskjd < s j + 1d +
sl + md

l
+ l . s14d

s2d For nonhub nodeswith degreek, we can write

knnskd <
k + l + l2 + l3 + ¯ + l sk−1d

k
<

lsl sk−1d − 1d
ksl − 1d

.

s15d

FIG. 7. The clustering coefficientCskd evaluated with the con-
figurations s2+1d, up to i =8 iterationss7654 nodesd strianglesd,
s2+2d, up to i =7 iterationss13 653 nodesd scirclesd, ands2+3d, up
to i =6 iterationss10 156 nodesd ssquaresd. In all these cases, the
building blocks are triangles. FIG. 8. Numerical results ofknnskd calculated by using the pro-

posed model with configurationss2+1d up to i =8 iterations
scirclesd, s2+2d up to i =7 iterationsstrianglesd, ands2+3d up to i
=6 iterationsssquaresd. Dashed lines: Results of Eq.s14d shigh
degree of nodesd and Eq. s15d slow degree of nodesd. For each
configuration, the symbol with highest degreek indicates the con-
tribution from the main hub. We also note that the degree of the
main hub does not follow the approximate equation because this top
node does not have a parent. A small deviation from the analytical
line around degreek=8 is found only for thes2+1d configuration.
In this case, some nonhub nodes and some hubnodes have the same
degree.
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The first termj comes from the degree of the nonhub nodes
shown at the bottom of Fig. 2sdd sdark colord, which are also
connected to the main hub. The series in terms ofl comes
from the connectivity of these nonhub nodes to thej th inter-
mediate hubssfor eachjd.

From Eqs.s14d and s15d, we can see that nonhub nodes
and hub nodes have different behavior. These equations are
plotted in Fig. 8sdashed linesd for the casel =m=2 si.e., 2
+2d. It is worth noticing that the degree of the main hub does
not follow the approximate equation because this top node
does not have a parent. For example, it is straightforward to
see that the circlesconfiguration 2+1d with highest degree
corresponds to the main hub with degree given byk=2i

+s2+1d. As the number of iteration isi =8, the degree of the
main hub isk=259. We see that a circle with that high degree
is seen in Fig. 8 and slightly below the analytical line. Fi-
nally, we remark that, although the equations proposed for
nonhub nodesfEq. s15dg and hub nodesfEqs.s13d ands14dg
are an approximate estimation, the analytical expressions
capture quite well the behavior of the results obtained by
numerical calculation of the model shown in Fig. 8.

V. CONCLUSIONS

In summary, we have presented here a model to reproduce
the main features of the hierarchical organization, which is
one of the central challenges in the field of network science.
Our model holds important properties such as structural flex-
ibility and its more general capability to generate values of
g.2, being able to reproduce most of the observed scale-
free topologies, even in networks with exponents aboveg
=2.58, where the RSMOB model failsf2g. Therefore, our
model might be a useful tool to uncover the hierarchical
features in biological and nonbiological networks in a
broader scope. As future work, it would be interesting to
analyze the community structure or modularity in the pro-
posed network by using the quantitative measures provided
by a recent work of Newman and Girvanf29g.
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